
Fractal Network

August Vault
Security Assessment Report

Version: 2.1

August, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 4Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Two nonReentrancy Modifiers Prevent liquidate() Execution . 7Restricted Token Redeem Period When lagDuration == 0 . 8Inflation Attack On Empty Vault Can DoS The Vault . 9Recent Solidity Versions May Not Be Supported By Layer 2 Systems 10Index Swapping May Prevent Subsequent Calls To claim() . 11Excessive Redeem Requests May Cause processAllClaimsByDate() to Revert 12Potentially Inefficient Search On getReceiverIndex() . 13Potential Double Funding Of Loan Contracts . 14Ownership Mechanism Lacks Additional Safeguards . 15Deviation From Common Interface Naming Convention . 16Variable _maxSupply Is Used For Two Different Purposes . 17Rogue Owner May Siphon Assets Through emergencyWithdraw() 18Miscellaneous General Comments . 19
A Test Suite 22

B Vulnerability Severity Classification 23

1

August Vault Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the August smart contracts.The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the August smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the August smart contracts.

Overview

The LendingPool contract is an ERC4626-compliant token vault designed to increase the utilisation of a liquidrestaking token (LRT) through lending and borrowing activities. Userswith LRT can become lenders by depositingtheir tokens into the pool. The pool operator then lends the collected tokens or funds to borrowers through loancontracts. Lenders can withdraw from the scheme at any time, and the pool operator reserves the right to callthe loans whenever necessary to ensure the required funds are available for returning to the lenders.

Page | 2

August Vault Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the Fractal Protocol repository.
The scope of this time-boxed review was strictly limited to files at commit 4923890. The fixes of the identifiedissues were assessed at commit d510a02.
The list of assessed contracts is as follows:

• LendingPool

• BaseUpgradeableERC20

• BaseUpgradeableERC4626

• TimelockedERC4626

• OwnableLiquidityPool

• AbstractLender

• HookableLender

• BaseLendingPool

• BaseOwnable

• BaseReentrancyGuard

• DateUtils

• IPermissionlessLoansDeployer

• ILenderHook

• IPeerToPeerOpenTermLoan

Note: third party libraries and dependencies, such as OpenZeppelin and Murky, were excluded from the scope of this
assessment.

Approach

The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team also utilised the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya
• Aderyn: https://github.com/Cyfrin/aderyn

Output for these automated tools is available upon request.

Page | 3

https://github.com/fractal-protocol/august-contracts-upgradeable
https://github.com/fractal-protocol/august-contracts-upgradeable/tree/492389005a2146d649ca835c6b5f649848a8b86a
https://github.com/fractal-protocol/august-contracts-upgradeable/commit/d510a02b3b9932638f782bc3543564a1d8dfdf61
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya
https://github.com/Cyfrin/aderyn

August Vault Coverage Limitations

Coverage Limitations

Due to a time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 13 issues during this assessment. Categorised by their severity:
• High: 1 issue.
• Medium: 3 issues.
• Low: 2 issues.
• Informational: 7 issues.

Page | 4

August Vault Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the August smart contracts.Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
AUG-01 Two nonReentrancy Modifiers Prevent liquidate() Execution High Resolved

AUG-02 Restricted Token Redeem Period When lagDuration == 0 Medium Resolved

AUG-03 Inflation Attack On Empty Vault Can DoS The Vault Medium Resolved

AUG-04 Recent Solidity Versions May Not Be Supported By Layer 2 Systems Medium Resolved

AUG-05 Index Swapping May Prevent Subsequent Calls To claim() Low Resolved

AUG-06 Excessive Redeem Requests May Cause processAllClaimsByDate() toRevert Low Resolved

AUG-07 Potentially Inefficient Search On getReceiverIndex() Informational Resolved

AUG-08 Potential Double Funding Of Loan Contracts Informational Resolved

AUG-09 Ownership Mechanism Lacks Additional Safeguards Informational Closed

AUG-10 Deviation From Common Interface Naming Convention Informational Resolved

AUG-11 Variable _maxSupply Is Used For Two Different Purposes Informational Closed

AUG-12 Rogue Owner May Siphon Assets Through emergencyWithdraw() Informational Closed

AUG-13 Miscellaneous General Comments Informational Resolved

6

August Vault Detailed Findings

AUG-01 Two nonReentrancy Modifiers Prevent liquidate() Execution
Asset pools/base/AbstractLender.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

Two nonReentrant modifiers are executed in a single call, causing ReentrancyGuard to revert during liquidate() .
When the function AbstractLender.liquidate() is called, the following call sequence occurs.

1. AbstractLender.liquidate() is called on the lender contract. The function has a nonReentrant modifier. At this
point, _reentrancyStatus is set to _REENTRANCY_ENTERED .

2. IPeerToPeerOpenTermLoan(loanAddr).liquidate() is called on the respective loan contract. This code may exe-
cute InitializableOpenTermLoan.liquidate() .

3. IHookableLender(lender).notifyLoanMatured() is called on the lender contract. The function has a nonReentrant
modifier as described in HookableLender.sol .

Since the _reentrancyStatus of the lender contract was already set to _REENTRANCY_ENTERED in step (1), the call in step
(3) would cause a revert on BaseReentrancyGuard._nonReentrantBefore() . The result is, AbstractLender.liquidate()will revert.
The impact is rated as medium severity as being unable to call liquidate() prevents losses being accounted for at thepool level.

Recommendations

Consider removing one of the nonReentrant modifiers either on AbstractLender or HookableLender contract.

Resolution

The issue was resolved on commit 2196d53. The nonReentrant modifier on AbstractLender.liquidate() was re-moved.

Page | 7

https://github.com/fractal-protocol/august-contracts-upgradeable/commit/2196d5357aad71eaf2dcfc6bbff8a4f6d69c59cc

August Vault Detailed Findings

AUG-02 Restricted Token Redeem Period When lagDuration == 0

Asset pool/base/TimelockedERC4626.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

If lagDuration == 0 , users may have only a limited period, potentially just 1 hour in a day, to claim their token.
When lagDuration == 0 , the pool is not time-locked. Therefore, users are supposed to redeem their tokens in-
stantly. However, this is not the case, as the redeem phase still depends on the liquidationHour . Indeed, when
lagDuration == 0 , the function requestRedeem() calls the internal function _claim() in the following code fromlines [130-133]:
if (lagDuration == 0) {

claimableEpoch = block.timestamp;
_claim(year, month, day, 0, receiverAddr);

}

If the call happens before the liquidationHour , the call will revert because of the require statement on line [428]:
require(block.timestamp + _TIMESTAMP_MANIPULATION_WINDOW >= DateUtils.timestampFromDateTime(year, month, day, liquidationHour, 0,

0), "Too early");↪→

Hence, the current timestamp is checked with year , month , day and the liquidationHour . For example, when
liquidationHour = 23 , users would have only 1 hour a day, just between 11:00 PMUTC and 11:59 PMUTC, to redeemtheir tokens.

Recommendations

Update the liquidationHour to 0 , when updating the lagDuration to 0 in the function updateTimelockDuration() .
Also, consider reverting if there is a call to update the liquidationHour to a value other than 0 when
lagDuration == 0 in the function updateProcessingHour() .

Resolution

The development team has fixed this issue in commit d510a02, by adding the following the require statement whenthe lagDuration > 0 .
require(block.timestamp + _TIMESTAMP_MANIPULATION_WINDOW >= DateUtils.timestampFromDateTime(year, month, day, liquidationHour, 0,

0), "Too early");↪→

Page | 8

https://github.com/fractal-protocol/august-contracts-upgradeable/commit/d510a02b3b9932638f782bc3543564a1d8dfdf61

August Vault Detailed Findings

AUG-03 Inflation Attack On Empty Vault Can DoS The Vault
Asset pools/base/BaseUpgradeableERC4626.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

The first depositor may execute an inflation attack to prevent other users from depositing.
A malicious first depositor can inflate the rate between the shares and assets. This can be done by first depositingthe lowest possible amount of supported assets to the vault, then transferring a large amount of assets to the vaultcontract directly without calling deposit() or mint() . The asset transfer will artificially inflate the share price forfuture depositors. If their deposited amount is less than a specific value, legitimate users cannot deposit due to thecheck statement on line [100] because their shares will be 0 due to the share price inflation.
Consider the following attack scenario:

1. First we assume that the vault is freshly generated.
2. The attacker deposits 1 asset by calling deposit(1) . Thus, totalAssets()==1 , totalSupply()==1 .
3. The attacker inflates the rate by transferring the underlying asset directly to the vault. Let us assume they transfer

10_000e6 - 1 . Now we have totalAssets() == 10_000e6 and totalSupply() == 1 .
4. At this point, legitimate users cannot deposit an amount less than 10_000e6 . This is

because if the deposited amount is less than 10_000e6 , the expected shares will be
zero, since shares = totalSupply * depositedAmount / totalAssets , and therefore we have
shares = 1 * depositedAmount / 10_000e6 which yields zero shares.

Recommendations

The simplest countermeasure to inflation attacks is ensuring that the vault is never empty. This can be achieved bydepositing into the vault in the deployment/initialisation script.

Resolution

The development team has confirmed that they are going to manually perform the first deposit into the vault.

Page | 9

August Vault Detailed Findings

AUG-04 Recent Solidity Versions May Not Be Supported By Layer 2 Systems
Asset src/*.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Solidity versions starting from 0.8.25 use the MCOPY op-code by default. The op-code MCOPY will cause a revert if it
is called on chains that are not upgraded to the EVM version Cancun. The Solidity operations that include the MCOPYby default:

• The helper function abi.encode() ;
• Functions which return byte array;
• Functions which return string types.

The testing team has compiled the contract and discovered occurrences of MCOPY in the bytecode.
The impact of deploying the contract on chains that do not upgrade their EVM to Cancun is high. This is because thefunds can be stuck. MCOPY will not be usedwhen depositing funds allowing funds to enter the protocol. However, when
trying to redeem, the transaction will revert since the function _registerRedeemRequest() contains an abi.encode()
instruction which uses MCOPY by default.

Recommendations

Consider setting the Solidity compile flag --evm-version such that it is an earlier EVM version. paris is a good choice
for the EVM version as it does not contain either PUSH0 or MCOPY opcodes.
Alternatively, using a compiler version which is strictly less < 0.8.25 .
Note that shanghai (the default in Solidity from 0.8.20 to 0.8.24) introduces the opcode PUSH0 which may or maynot be supported by other chains.
Furthermore, validate the EVM version of each chain before compiling contracts and deploying to that chain.

Resolution

The development team are resolving the issue by setting the EVM version to Paris during compilation.

Page | 10

August Vault Detailed Findings

AUG-05 Index Swapping May Prevent Subsequent Calls To claim()

Asset pools/base/TimelockedERC4626.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The internal function _deleteReceiver() swaps the index of a receiver address with the last item, if the index is notthe last item.
This algorithm is commonly used in Solidity as a cost-effective solution for removing an array item. However, since
receiverIndex is used as one of the inputs in the claim() function, the index swapping could cause a revert if there
are subsequent calls to claim() .
Consider the following mock case. Let us assume there are ten users who wish to withdraw at the same time.

1. First, they will query their respective receiverIndex through the getReceiverIndex() function.
2. Using this information, each user calls claim() . Ten transactions are created almost at the same time.
3. We assume that the first user's transaction is successful. At this point, the last item is swapped to be the firstitem in the array.
4. If the last user's transaction is executed, this transaction reverts with an Invalid receiver index message.

Recommendations

The receiverIndex information can be cheaply computed onchain if the basic array is replaced with alternative solu-tions such as OpenZeppelin's EnumerableSet.

Resolution

The development team has resolved this issue by extracting the value of receiverIndex on-chain in the _claim()
function, through the receiverAddr by using a new mapping _receiverIndexes .

Page | 11

https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet

August Vault Detailed Findings

AUG-06 Excessive Redeem Requests May Cause processAllClaimsByDate() to Revert
Asset pools/base/TimelockedERC4626.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Users can submit a large number of redeem requests on the same day. This could prevent a successful call to
processAllClaimsByDate() if the call breaches the block gas limit.
The function processAllClaimsByDate() loops through all redeem requests for a single day. If the number of requestsis too large, the result is excessive gas consumption potentially larger than the block gas limit.
Gas limit tests indicate that the block gas limit will be breached when there are roughly 1,000 redeem requests.
Consequently, users may need to call the claim() function for individual requests.

Recommendations

Consider adding a limit as an input to the processAllClaimsByDate() function so that requests can be processed inmultiple batches when needed. Also, consider adding a minimum withdrawal to prevent dust amounts from beingwithdrawn.

Resolution

The first recommendation has been implemented in commit d510a02. The function processAllClaimsByDate() now
has an argument maxLimit which represent the number of request to process for a dailyCluster .

Page | 12

https://github.com/fractal-protocol/august-contracts-upgradeable/commit/d510a02b3b9932638f782bc3543564a1d8dfdf61

August Vault Detailed Findings

AUG-07 Potentially Inefficient Search On getReceiverIndex()

Asset pools/base/TimelockedERC4626.sol

Status Resolved: See Resolution
Rating Informational

Description

The code on lines [336-338] uses a basic loop to find the index in the array that contains an address. The gas cost ofthe query increases proportionally with the number of requests. The case of significant gas cost may arise deliberatelyor maliciously, if there are numerous requests with different receiverAddr values received by the contract in one day.
It is also worth noting that if there are multiple requests with the same receiverAddr , this query only returns the firstrequest in the array.

Recommendations

To improve the efficiency of the search mechanism, consider implementing OpenZeppelin's EnumerableSet to storeaddresses.

Resolution

The function getReceiverIndex() has been removed in commit d510a02 and it is replaced by mapping
_receiverIndexes which stores the index of each unique receiver per cluster.

Page | 13

https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet
https://github.com/fractal-protocol/august-contracts-upgradeable/commit/d510a02b3b9932638f782bc3543564a1d8dfdf61

August Vault Detailed Findings

AUG-08 Potential Double Funding Of Loan Contracts
Asset pools/base/BaseLendingPool.sol

Status Resolved: See Resolution
Rating Informational

Description

The fundLoan() function in BaseLendingPool does not perform a pre-check on the loan state to ensure that it requiresfunding.
function fundLoan(address loanAddr) external override onlyIfInitialized nonReentrant ifConfigured onlyLoansOperator {
// ... existing code ...

IPeerToPeerOpenTermLoan(loanAddr).fundLoan();

// Post checks
require(IPeerToPeerOpenTermLoan(loanAddr).loanState() == LOAN_ACTIVE, "Funding check failed");

// ... other checks ...
}

While there is a post-funding check to ensure the loan is active, there is no pre-funding verification that the loanrequires funding.
The issue is raised as informational severity, as the check is performed in InitializableOpenTermLoan . If other imple-
mentations of IPeerToPeerOpenTermLoan do not implement the check, double funding could be possible.

Recommendations

Consider adding a pre-funding check in fundLoan() to ensure the loan state is LOAN_FUNDING_REQUIRED before pro-ceeding with the funding operation.
Note that this check would increase gas costs in making an additional call to the loanAddr .

Resolution

The recommended check has been implemented in commit d510a02.

Page | 14

https://github.com/fractal-protocol/august-contracts-upgradeable/commit/d510a02b3b9932638f782bc3543564a1d8dfdf61

August Vault Detailed Findings

AUG-09 Ownership Mechanism Lacks Additional Safeguards
Asset core/BaseOwnable.sol & pools/LendingPool.sol

Status Closed: See Resolution
Rating Informational

Description

The BaseOwnable and LendingPool contracts implement a basic ownership mechanism. While functional, it lackssafeguards against accidental transfers to invalid addresses.
The current transfer of ownership pattern calls the function transferOwnership(address newOwner) which instantly
changes the owner to the newOwner . This allows the current owner of the contracts to set an arbitrary address.
If the address is entered incorrectly, the owner role of the contract is lost forever. Thus, a user would not be able topass the onlyOwner modifier.

Recommendations

This scenario is typically mitigated by implementing a two-step transfer pattern, whereby a new owner address isselected, then the selected address must call an acceptOwnership() before the owner is changed. This ensures thenew owner address is accessible.
Consider adopting OpenZeppelin's Ownable2Step pattern or implementing a similar two-step ownership transfer pro-cess.

Resolution

The development has decided not to fix the issue. They mentioned that the owner will be protected by a multi-sigaccount.

Page | 15

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/e3786e63e6def6f3b71ce7b4b30906123bffe67c/contracts/access/Ownable2Step.sol

August Vault Detailed Findings

AUG-10 Deviation From Common Interface Naming Convention
Asset loans/interfaces/ILenderHook.sol

Status Resolved: See Resolution
Rating Informational

Description

The interface ILenderHook deviates from common naming conventions. Typically, interfaces are named using theformat I + contract name.
The contract implementing ILenderHook is named HookableLender .

Recommendations

Consider renaming the interface to IHookableLender for improved clarity and adherence to standard naming practices.

Resolution

The interface was renamed to IHookableLender as per the recommendation in commit d510a02.

Page | 16

https://github.com/fractal-protocol/august-contracts-upgradeable/commit/d510a02b3b9932638f782bc3543564a1d8dfdf61

August Vault Detailed Findings

AUG-11 Variable _maxSupply Is Used For Two Different Purposes
Asset pools/base/BaseUpgradeableERC4626.sol and pools/base/BaseUpgradeableERC20.sol

Status Closed: See Resolution
Rating Informational

Description

The variable _maxSupply is used as the return value of the function maxMint() which, according to the NatSpeccomment of this function, is specified as “the maximum amount of the Vault shares that can be minted for the receiver,
through a mint call“. However, this variable is also used as the maximum value of totalSupply in the function
BaseUpgradeableERC20._canMint() .

Recommendations

To avoid confusion, use another variable as the return value of the function maxMint() or rename the function
maxMint() to maxSupply() .

Resolution

The development team has decided to mark this issue as a Won’t fix. They confirmed that the max supply is the maxmint as well.

Page | 17

August Vault Detailed Findings

AUG-12 Rogue Owner May Siphon Assets Through emergencyWithdraw()

Asset pools/base/OwnableLiquidityPool.sol

Status Closed: See Resolution
Rating Informational

Description

The emergencyWithdrawal() function lacks preconditions or restrictions, allowing the owner to withdraw any tokensat will.
There is a risk to the integrity of the pool and the security of depositors' funds. Specific concerns for depositors include:

• No defined conditions that constitute an "emergency," giving the owner discretion to use this function at any timewithout justification.
• A malicious or compromised owner exploiting this function to perform an exit scam, instantly draining all assetsfrom the pool.
• Undermining the trustless nature of the DeFi protocol, as depositors must rely entirely on the owner's integrity.

The contrary view is that an emergencyWithdraw() potentially allows benevolent owner to extract funds to a safeaddress in the event of a protocol compromise.

Recommendations

Ensure the owner is a multi-signature wallet or the relevant DAO.
Furthermore, consider the trade-offs between safely extracting user funds in the case of an emergency and the risk ofa compromised owner address stealing funds stored in the protocol.

Resolution

The development team has decided not to fix this issue as they will use a multi-sig account to call the function
emergencyWithdraw() .

Page | 18

August Vault Detailed Findings

AUG-13 Miscellaneous General Comments
Asset All contracts
Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Redundant Code Adds Minimal Impact To The Contract
Related Asset(s): pools/LendingPool.sol
The following code snippet indicates an effort to initialise the value of _reentrancyStatus .
_reentrancyStatus = _REENTRANCY_NOT_ENTERED;

The variable _reentrancyStatus() is utilised to store a flag to identify whether reentrancy has occurred or not.
The utilisation of this variable is done mainly on BaseReentrancyGuard contract.
A uint256 Solidity variable would be assigned to a default value of zero and therefore, the initialisation code
above is not necessary to make modifier nonReentrant of BaseReentrancyGuard contract works.
The code on line [30] of LendingPool contract can be safely removed.

2. Inaccurate Data In Event WithdrawalRequested
Related Asset(s): pools/base/TimelockedERC4626.sol
The event emittance on line [405] uses assetsAmount instead of effectiveAssetsAmount . This does not conformto the NatSpec specification for event Requested on line [51] as follows:
@param assets The amount of underlying assets to transfer.
...
event WithdrawalRequested (address ownerAddr, address receiverAddr, uint256 shares,

uint256 assets, uint256 fee, uint256 year, uint256 month, uint256 day);

Consider replacing assetsAmount with effectiveAssetsAmount .
3. Duplicate Code Present In Notifying Loans

Related Asset(s): pools/base/HookableLender.sol
The functions notifyLoanMatured() , notifyLoanClosed() and notifyPrincipalRepayment() in the
HookableLender contract are nearly identical. While these functions perform the same operations, theyserve distinct semantic purposes in the contract's logic. However, code duplication should be minimised as muchas possible.
To reduce code duplication while maintaining semantic clarity, consider implementing an internal function con-taining the shared logic.

4. Out Of Place Function
Related Asset(s): pools/base/BaseLendingPool.sol
The collectFees() function in BaseLendingPool appears to be out of place:

Page | 19

August Vault Detailed Findings

function collectFees() external onlyIfInitialized nonReentrant ifConfigured onlyOwner {
require(feesCollector != address(0), "Fee collector not set");
require(totalCollectableFees > 0, "No fees to collect");
_collectFees();

}

This function calls _collectFees() , which is likely inherited from TimelockedERC4626 . These fees are typicallyassociated with user redemptions of deposits, rather than being directly related to loan operations. Its presencein a contract focused on loan deployment and management may lead to confusion about the source and natureof these fees.
Consider moving this function to a more appropriate contract that deals with user deposits and withdrawals, orclearly document its purpose and fee source in the contract.

5. Redundant Code And Unnecessary Conditional Structure
Related Asset(s): pools/LendingPool.sol
The current implementation of updateTimelockDuration contains redundant code and a potentially unnecessaryconditional structure:
if (newDuration > lagDuration) {

lagDuration = newDuration;
} else {

require(globalLiabilityShares == 0, "Process claims first");
lagDuration = newDuration;

}

Refactor the code to remove duplication and improve readability:
if (newDuration < lagDuration) {

require(globalLiabilityShares == 0, "Process claims first");
}
lagDuration = newDuration;

6. Contract Contains Commented-Out Code
Related Asset(s): pools/LendingPool.sol
The updateTimelockDuration function in the LendingPool contract contains commented-out code:
//require(newDuration >= 2 hours, "Timelock too short");

Remove the commented-out code. If this check is no longer needed, it should be deleted entirely. If it mightbe required in the future, document the rationale in a comment or move it to development notes outside thecontract.
7. Unnecessary onlyIfInitializedModifier

Related Asset(s): src/*.sol
The use of the onlyIfInitialized modifier in functions that have the modifier ifConfig is unneces-
sary and leads to more gas consumption. This is because the function configurePool() has the modifier
onlyIfInitialized .
Remove the modifier onlyIfInitialized from the functions that have ifConfig .

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Page | 20

August Vault Detailed Findings

Resolution

The development team’s responses to the raised issues above are as follows.
1. The issue was resolved as suggested. The initialisation of the variable _reentrancyStatus is removed.
2. The issue was acknowledged by the development team as the effective amount can be calculated offchain

assetsAmount - applicableFee .
3. The issue was acknowledged by the development team as the internal function will increase the contract’s codesize.
4. The issue was resolved by removing the function _collectFees() from the contract TimelockedERC4626 . The

external function collectFees is updated accordingly.
5. The code was refactored as suggested.
6. The code was removed as suggested.
7. The issue was resolved as suggested by removing the modifier onlyIfInitialized .

Page | 21

August Vault Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The Forge framework was used to perform these tests and the output is given below.
Ran 1 test for test/tests-local/pools/base/OwnableLiquidityPool.t.sol:OwnableLiquidityPoolTestSigp
[PASS] test_sigp_emergencyWithdraw_USDC() (gas: 14975324)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 12.70ms (2.49ms CPU time)

Ran 4 tests for test/tests-local/pools/base/BaseUpgradeableERC4626.t.sol:BaseUpgradeableERC4626TestSigp
[PASS] test_sigp_deposit_USDC(uint256) (runs: 1002, µ: 14806114, ~: 14772111)
[PASS] test_sigp_deposit_USDC_inflationAttack() (gas: 15023930)
[PASS] test_sigp_mint_USDC(uint256) (runs: 1002, µ: 14807385, ~: 14774765)
[PASS] test_sigp_mint_USDC_donationAttack() (gas: 15150679)
Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 1.87s (3.63s CPU time)

Ran 2 tests for test/tests-local/pools/base/BaseLendingPool.t.sol:BaseLendingPoolTestSigp
[PASS] test_sigp_deployLoan_fundLoan_USDC_WBTC() (gas: 19913658)
[PASS] test_sigp_deployLoan_fundLoan_twice_USDC_WBTC() (gas: 20112060)
Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 3.24s (9.30ms CPU time)

Ran 8 tests for test/tests-local/pools/LendingPool.t.sol:LendingPoolTestSigp
[PASS] test_sigp_configurePool(uint256,uint256,uint256,uint256,address,address,address,uint8) (runs: 1002, µ: 14626428, ~:

14558876)↪→
[PASS] test_sigp_pauseDepositsAndWithdrawals(bool,bool) (runs: 1002, µ: 14732481, ~: 14732505)
[PASS] test_sigp_transferOwnership(address) (runs: 1002, µ: 14575925, ~: 14575925)
[PASS] test_sigp_updateFeesCollector(address) (runs: 1002, µ: 14754282, ~: 14754282)
[PASS] test_sigp_updateIssuanceLimits(uint256,uint256,uint256) (runs: 1002, µ: 14736716, ~: 14737018)
[PASS] test_sigp_updateProcessingHour(uint8,bool) (runs: 1002, µ: 14642503, ~: 14709447)
[PASS] test_sigp_updateTimelockDuration(uint256) (runs: 1002, µ: 14729662, ~: 14729087)
[PASS] test_sigp_updateWithdrawalFee(uint256) (runs: 1002, µ: 14732862, ~: 14726989)
Suite result: ok. 8 passed; 0 failed; 0 skipped; finished in 3.66s (12.48s CPU time)

Ran 5 tests for test/tests-local/pools/base/AbstractLender.t.sol:AbstractLenderTestSigp
[PASS] test_sigp_callLoan_USDC_WBTC() (gas: 20119322)
[PASS] test_sigp_liquidate_USDC_WBTC() (gas: 20136742)
[PASS] test_sigp_returnCollateral_USDC_WBTC() (gas: 20135092)
[PASS] test_sigp_seizeCollateral_USDC_WBTC() (gas: 20128056)
[PASS] test_sigp_seizeCollateral_callLoan_USD_WBTC() (gas: 20133381)
Suite result: ok. 5 passed; 0 failed; 0 skipped; finished in 10.39s (25.99ms CPU time)

Ran 12 tests for test/tests-local/pools/base/TimelockedERC4626.t.sol:TimelockedERC4626TestSigp
[PASS] test_sigp_processAllClaimsByDate(uint256) (runs: 1002, µ: 16032280, ~: 16029174)
[PASS] test_sigp_processAllClaimsByDate_multi_oog(uint256) (runs: 1002, µ: 18579696, ~: 18550860)
[PASS] test_sigp_redeem(uint256,uint256) (runs: 1002, µ: 14964413, ~: 14964136)
[PASS] test_sigp_requestRedeem_claim_with_fees(uint256,uint256) (runs: 1002, µ: 15136160, ~: 15136710)
[PASS] test_sigp_requestRedeem_claim_zero_fees(uint256,uint256) (runs: 1002, µ: 15083092, ~: 15083898)
[PASS] test_sigp_requestRedeem_claim_zero_fees_changing_index() (gas: 17322746)
[PASS] test_sigp_requestRedeem_getReceiverIndex_duplicateReceiver(uint256) (runs: 1002, µ: 15339612, ~: 15347793)
[PASS] test_sigp_requestRedeem_getReceiverIndex_multi(uint256) (runs: 1002, µ: 20253518, ~: 20436968)
[PASS] test_sigp_requestRedeem_zero_fees_zero_lagDuration(uint256,uint256) (runs: 1002, µ: 15179266, ~: 15179412)
[PASS] test_sigp_requestRedeem_zero_fees_zero_lagDuration_claimableEpoch(uint256,uint256) (runs: 1002, µ: 15040359, ~: 15040926)
[PASS] test_sigp_requestRedeem_zero_fees_zero_liquidationHour(uint256,uint256,uint256) (runs: 1002, µ: 15185739, ~: 15185717)
[PASS] test_sigp_withdraw(uint256,uint256) (runs: 1002, µ: 14964420, ~: 14964299)
Suite result: ok. 12 passed; 0 failed; 0 skipped; finished in 10.77s (48.76s CPU time)

Ran 6 test suites in 10.78s (29.94s CPU time): 32 tests passed, 0 failed, 0 skipped (32 total tests)

Page | 22

August Vault Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 23

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Two nonReentrancy Modifiers Prevent liquidate() Execution
	Restricted Token Redeem Period When lagDuration == 0
	Inflation Attack On Empty Vault Can DoS The Vault
	Recent Solidity Versions May Not Be Supported By Layer 2 Systems
	Index Swapping May Prevent Subsequent Calls To claim()
	Excessive Redeem Requests May Cause processAllClaimsByDate() to Revert
	Potentially Inefficient Search On getReceiverIndex()
	Potential Double Funding Of Loan Contracts
	Ownership Mechanism Lacks Additional Safeguards
	Deviation From Common Interface Naming Convention
	Variable _maxSupply Is Used For Two Different Purposes
	Rogue Owner May Siphon Assets Through emergencyWithdraw()
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

