

PUBLIC

Code Assessment

of the Core Vault

Smart Contracts

Jan 21, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 16

7 Informational 22

8 Notes 25

August - Core Vault - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear August,

Thank you for trusting us to help August with this security audit. Our executive summary provides an
overview of the subjects covered in our audit of the latest reviewed contracts of Core Vault according to
Scope to support you in forming an opinion on their security risks.

The assessed contracts are the base layer for an investment protocol. The main contract is an
upgradable ERC4626 vault with a custom delayed withdrawal feature.

The most critical subjects covered in our audit are correct asset accounting, fee and share handling,
functional correctness, and standard compliance. We identified issues in the current vault implementation
regarding the share price calculations and fee accounting (see Incorrect price per share and Withdrawal
Fees Are Counted Towards the Vault Assets). All issues where addressed.

Less severe issues were caused by custom implementation instead of using libraries. Therefore, we
highly recommend using audited libraries whenever possible. Some major findings are acknowledged or
the risk is accepted and the mitigation is based on an off-chain solution (e.g., Blacklisted address can
redeem shares) run by August to ensure the correct functioning of the system. These mitigations are out
of scope for this audit. We recommend August to ensure that the infrastructure is secure and reliable and
to define clear specifications and tests for it to ensure its correct functioning.

The documentation provided is sparse and many assumptions are present regarding different
components, actions and roles. We highly recommend ramping up the documentation, writing clear
specifications and assumptions for the system, and extending the test suite but the communication with
the team was always good and prompt.

In summary, we find that the codebase provides a good level of security. Yet, it is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

August - Core Vault - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Medium -Severity Findings 6

• Code Corrected 6

Low -Severity Findings 8

• Code Corrected 2

• Specification Changed 1

• Risk Accepted 1

• Acknowledged 4

August - Core Vault - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Core Vault repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 18 Dec
2024

8ce6b80b26be065d633e5b0cf4e6e9924566c3d2 Initial Version

2 9 Jan 2025 945837ba4e6e23a2c783b6f138b4cb72961da222 After Intermediate Report

3 13 Jan
2025

e3d4f8eca4b913a6f3b7277d98c2ca8272ecfbfe Final version

For the solidity smart contracts, the compiler version ^0.8.19 and >= 0.8.26 were chosen.

2.1.1 Included in scope

• src/core/AddressWhitelist.sol

• src/core/BaseOwnable.sol

• src/core/BaseReentrancyGuard.sol

• src/core/LightweightOwnable.sol

• src/core/TimelockedCall.sol

• src/pools/base/BaseUpgradeableERC20v2.sol

• src/pools/base/BaseUpgradeableERC4626v2.sol

• src/pools/base/TimelockedClaimOnlyERC4626.sol

• src/tokenized/IAllocable.sol

• src/tokenized/TokenizedAccount.sol

• src/tokenized/BaseTokenizedAccount.sol

2.1.2 Excluded from scope
Any contracts inside the repository that are not mentioned in Scope are not part of this assessment.
Tests and deployment scripts are excluded from the scope as well as third party libraries.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

August - Core Vault - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

August implements a time locked ERC4626 where withdrawals are delayed by a set time period. Users
can deposit funds into a time locked vault where subaccount managers can invest the funds into various
other on-chain protocols on different chains.

TimelockedCall

The TimelockedCall contract is used to delay certain functionalities by a predefined
timeLockDuration. Additionally, it restricts the calling of functions by requiring that function calls be
registered and scheduled in the queue before execution.

Whitelisted addresses can initialize a scheduler by calling initScheduler(). A whitelisted scheduler is
authorized to call schedule, which sets a TimelockedCallInfo struct in the queue mapping. This
struct includes the targetEpoch, createdBy, and co`nsumerAddress. By calling consume() or
consumeOwnership(), the scheduled call can be executed by the consumerAddress once the
current block time exceeds the targetEpoch specified in the TimelockedCallInfo.

When deployed, the deployer provides a non-zero address that becomes the owner of the contract. The
owner has the authority to enable and disable addresses to become whitelisted through the
_whitelistedAddresses mapping. The owner can also transfer ownership directly to any address
using transferOwnership.

The queue is shared among all schedulers, allowing multiple schedulers to manage and execute
different scheduled calls concurrently.

It is assumed that all hashes are safely constructed and that there are no collisions.

BaseUpgradeableERC20v2

The BaseUpgradeableERC20v2 contract is an abstract contract that implements the ERC20 interface.
The contract inherits from Initializable and BaseReentrancyGuard. Additionally, the
_maxSupply can be configured with _setMaxSupply(). The supply is increased when new tokens are
minted with _mintErc20() and decreased when tokens are burned with _burnErc20().
_mintErc20() verifies through _canMint() that the maximum supply is not exceeded.

The contract also implements blacklist functionality through the isBlacklisted mapping.

BaseUpgradeableERC4626v2

The BaseUpgradeableERC4626v2 contract is an abstract contract that partially implements the
ERC4626 interface. The contract inherits from BaseUpgradeableERC20v2. Vault deposits and
withdrawals can be paused through the depositPaused and withdrawalPaused flags, which can be
set using _setPause(). Furthermore, maximum deposit and withdrawal amounts can be configured
through maxDepositAmount and maxWithdrawalAmount by calling _updateIssuanceLimits().
The maximum share supply can also be modified with _updateIssuanceLimits().

deposit() and mint() are restricted as they cannot be called by blacklisted addresses, and the
receiver address of the vault shares is also verified to not be blacklisted.

A withdrawalFee is defined, which is used in previewRedeem() to calculate the amount of
underlying assets that will be redeemed to the user for a given amount of shares.

redeem() and withdraw() from the ERC4626 interface are not implemented.

TimelockedClaimOnlyERC4626

TimelockedClaimOnlyERC4626 is an abstract contract that inherits from
BaseUpgradeableERC4626v2 and implements the time-locked withdrawal logic for the vault.

The contract implements withdraw() and redeem() to always revert according to the ERC4626
standard.

requestRedeem() allows users to create a redeem request. A redeem request is delayed by a set time
period defined by lagDuration and a 5-minute manipulation window. The redemption timestamp is

August - Core Vault - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

then converted to a (year, month, day) tuple. Therefore, the exact redemption hour and minute are not
considered. The tuple is then hashed to compute a dailyCluster which identifies the unique day to
which the redemption request belongs. Then, the claimableEpoch timestamp is computed from the
tuple and the addition of _DEFAULT_LIQUIDATION_HOUR which is 0. Therefore, a new claimable epoch
starts every day at 00:00:00 UTC and lasts for 24 hours.

Between the redemption request and the redemption execution, the shares are held by the vault. For
every dailyCluster, the contract keeps track of the total amount of shares and assets that are
redeemable during that day. It also records the list of receivers that will receive assets on that day. It is
important to note that the share price is calculated when the redemption request is submitted. Thus, the
share price is fixed for every pending redemption request, independent of the current share price.

requestRedeem() will revert if at least one of the msg.sender address, receiverAddr, or
holderAddr is blacklisted. In case the holderAddr is not msg.sender, the msg.sender needs to
have an allowance by the holderAddr.

Anyone can call claim() to execute a redemption for a given receiver and (year, month, day)
epoch. The function will revert if the msg.sender or the receiverAddr is blacklisted. If the request is
still pending, the function will also revert.

If the request has fulfilled the time lock duration, the shares are burned, and the assets are transferred to
the receiverAddr address. The redemption request data is then cleared from storage.

Additionally, the contract implements several view functions such as getWithdrawalEpoch(),
getRequirementByDate(), getClaimableAmountByReceiver(),
getBurnableAmountByReceiver(), and getScheduledTransactionsByDate() to query the
state of the current redemption requests.

BaseTokenizedAccount

The BaseTokenizedAccount contract is an abstract contract that inherits from
TimelockedClaimOnlyERC4626 and BaseOwnable. It implements initialize() from the
Initializable contract. The owner and ERC20 are set during initialization. Furthermore, the vault
deposits and withdrawals are paused. configure() is then required to be called to set parameters
such as maxDepositAmount, maxWithdrawalAmount, or maxChangePercent. The
TimelockedCall contract is also used to configure the owner with a permissioned scheduler. The
delay for the time lock is set to 1 day.

The functions that are delayed by the TimelockedCall contract are:

• BaseTokenizedAccount.transferOwnership()

• BaseTokenizedAccount.updateTimelockDuration()

• BaseTokenizedAccount.updateManagementFee()

• BaseTokenizedAccount.updateMaxChangePercent()

whitelistedSubAccounts can be configured by the owner. Funds can be deposited and withdrawn to
these subaccounts through withdrawFromSubaccount() and depositToSubaccount() by the
operator. The subaccounts are then able to invest the funds into other on-chain products.

processAllClaimsByDate() is a function that allows anyone to process all redemption requests for a
given date. The function will revert if the msg.sender is blacklisted. If the receiverAddr is blacklisted,
the function will not revert. Instead, the assets will be redeemed and sent to a settlement account.

An emergencyWithdraw function is implemented, which allows the owner to withdraw all assets from
the vault to a non-blacklisted address.

A managementFeePercent is defined, which is used to calculate the management fee for the vault.
The management fee percentage represents a yearly fee rate and can be adjusted with
updateManagementFee() by the owner. For the management fee to be applied,
chargeManagementFee() must be called regularly. The fee is calculated from the total assets of the
vault and the time since the last fee charge. Management and withdrawal fees can be sent to the
feesCollector address by calling collectFees().

August - Core Vault - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Furthermore, the owner has the capability to:

1. updateOperator(): Updates the operator address.

2. updateSettlementAccount(): Updates the settlement account address.

3. removeFromBlacklist(): Removes an address from the blacklist.

4. addToBlacklist(): Adds an address to the blacklist.

5. updateWithdrawalFee(): Updates the withdrawal fee.

6. pauseDepositsAndWithdrawals(): Changes the pause state of deposits and withdrawals.

7. updateIssuanceLimits(): Updates the maximum deposit, withdrawal amount, and the
maximum supply.

8. updateTimelockDuration(): Updates the duration of the withdrawal time lock.

TokenizedAccount

The TokenizedAccount contract inherits from BaseTokenizedAccount and implements a single
function updateTotalAssets(). This function allows the operator to update the current amount of
externally held assets by different subaccounts. The function will revert if the percentage change in
assets is greater than managementFeePercent. Furthermore, it records the timestamp at which the
asset amount was updated as the managementFeePercent is computed from maxChangePercent,
which is a daily percentage change, and the last update timestamp.

2.3 Roles and Trust Model
The following roles are defined in the system:

Owner: The owner of the vault is fully trusted. The owner can modify the parameters of the vault, blacklist
addresses from interacting with the vault. The owner can also withdraw all assets from the vault in case
of an emergency.

Operator: The operator is in charge of managing the subaccounts and the vault. The operator can
deposit and withdraw funds to and from the subaccounts and is fully trusted. The operator is defined by
the owner and is therefore considered trusted by the owner to manage the vault.

Scheduler: Schedulers can call schedule and queue a call. They are assumed to act responsibly and
schedule the calls as intended.

It is assumed that the decimals will be configured correctly when deploying the vault. More generally, the
deployment parameters are assumed to be correct.

Tokens are only added after their compatibility has been assessed and properly tested.

The client is expected to perform a sufficiently large first deposit to the vault to prevent subsequent
inflation attacks. This might be needed each time the vault starts from a zero balance, too.

The vault is assumed to be deployed behind a 1967 proxy contract. The proxy contract is assumed to be
secure.

The time lock duration is considered to be larger or equal to 24 hours. The lag duration for withdrawals is
assumed to be always selected in a way that leaves enough time for users to withdraw their funds before
a parameter change can be executed. Thus, a time lock of 24 hours implies a lag duration of 0.

Version 22.3.1 Changes in
The TimelockedCall contract was modified to additionally hash the consumer address of a scheduled
call such that different consumers can consume the same call with the same parameters at the same
time.

August - Core Vault - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

TimelockedClaimOnlyERC4626 was modified to keep track of the globalLiabilityAssets, the
assets pending for redemption. This is required for BaseTokenizedAccount._getTotalAssets() to
calculate the total assets of the vault by accounting for the pending redemption requests.

Furtheremore, _getTotalSupply() was added to calculate the total supply of shares without the
pending shares to be redeemed.

The blacklist checks in TimelockedClaimOnlyERC4626.requestRedeem() and
TimelockedClaimOnlyERC4626.claim() were removed.

Additional assumption were made such as:

• The pool is assumed to be used with well-known tokens like USDC or WETH.

• August will monitor all subsequent actions of blacklisted addresses to prevent them from redeeming
their shares as it is not enforced by the contract. Please refer to Blacklisted address can redeem
shares for more information.

• It is assumed that lagDuration is set to reasonable value such that it allows August enough time
to react to redeems from blacklisted addresses.

August - Core Vault - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

August - Core Vault - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

August - Core Vault - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Risk AcceptedBlacklisted Address Can Redeem Shares

Medium -Severity Findings 0

Low -Severity Findings 5

• Risk AcceptedArgument Sanitization

• AcknowledgedFragmented Code Used

• AcknowledgedIneffective Check Maximum Mint Check

• AcknowledgedTimestamp Manipulation Window Ignored

• AcknowledgedVault Is Not ERC4626 Compliant

5.1 Blacklisted Address Can Redeem Shares
Security High Version 2 Risk Accepted

CS-AUGCORE-001

Version 2In of the code, checks for blacklisted users have been removed from
TimeLockedClaimOnlyERC4626.requestRedeem(). Therefore, by calling requestRedeem() with
a different receiverAddr then the holderAddr a blacklisted address can redeem shares for tokens,
after the waiting period, to an alternate address that is not yet blacklisted.

Risk accepted:

August accepts the risk with the following statement:

We recognize that this is a possible edge case. However, if address A1 is already blacklisted, which
required human intervention, we think it is reasonable to assume that we would be monitoring all
subsequent actions of malicious address A1 (we have an internal process to add blacklisted address to a
hexagate monitor). If A1 requestRedeems() with A2 as receiverAddr it is reasonable to assume
that we would subsequently also blacklist A2, especially since we have the lagDuration time to react.

However, it is important to configure lagDuration to be large enough to allow for enough time to react.
Indeed, lagDuration does not guarantee that the redeem request are delayed by at least
lagDuration (refer to Redeem requests can be lagged by less than lagDuration for more details),
resulting in a potentially to small time window to react.

August - Core Vault - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.2 Argument Sanitization
Correctness Low Version 1 Risk Accepted

CS-AUGCORE-009

For several functions in the codebase, arguments are not sanitized before being used :

1. In BaseTokenizedAccount.configure(), newUnderlyingAsset and
newManagementFeePercent are not sanitized.

2. In BaseTokenizedAccount.initialize the _owner is not checked if blacklisted.

3. In BaseTokenizedAccount.updateTimelockDuration(), newDuration is not checked to
be smaller than 24 hours.

4. In BaseTokenizedAccount.updateManagementFee(), managementFeePercent is not
checked to be smaller than 100% and to follow the format of being a percentage with 2 decimal
places.

5. In BaseTokenizedAccount.addToBlacklist add to blacklist does not check if it is address
zero or already blacklisted. removeFromBlacklist does not check if it has been blacklisted
before.

6. In BaseTokenizedAccount.updateMaxChangePercent(), maxChangePercent bounds are
not checked.

7. In BaseTokenizedAccount.updateWithdrawalFee(), withdrawalFee is not checked to be
smaller than 100% and to follow the format of being a percentage with 2 decimal places.

8. In BaseTokenizedAccount.enableAddress() the addr is not checked for address zero but
enableAddresses does.

9. The DateUtils library does not sanitize the inputs for timestampFromDateTime and
_daysFromDate. Only year is sanitized. But as month is capped at 12 and days at 31 this should
also be sanitized to avoid incorrect return values.

10. BaseTokenizedAccount.transferOwnership does not check if the new owner is the old
owner.

Risk accepted:

August accepts the risk of passing in non-sanitized parameters.

5.3 Fragmented Code Used
Design Low Version 1 Acknowledged

CS-AUGCORE-010

The code base is structured in an unconventional way and many definitions are fragmented and not used
where they should be used. The following list illustrates the unconventional design:

• The variables decimals, symbol and name are defined in BaseUpgradeableERC20v2 but not
set in the constructor. Instead, they are set in BaseTokenizedAccount's constructor.

• The mapping isBlacklisted is part of the contract BaseUpgradeableERC20v2 but not used
there and not part of the ERC20 standard.

• The error InvalidTimestamp and MaxAllowedChangeReached defined in
BaseTokenizedAccount but used in TokenizedAccount.

August - Core Vault - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• AddressWhitelist is responsible for the whitelisting functionality and not the owner management
but sets the _owner in the constructor instead of the BaseOwnable which defines the state
variable.

• BaseTokenizedAccount implements initialize() and calls _disableInitializer in its
constructor. The OpenZeppelin library Initializable is imported in
BaseUpgradeableERC20v2.

• BaseUpgradeableERC4626v2 defines the feesCollector but all initialization and main
interaction happens in BaseTokenizedAccount.

• In TimelockedClaimOnlyERC4626 the state variable settlementAccount is defined but not
used.

Acknowledged:

August acknowledges the code fragementation.

5.4 Ineffective Check Maximum Mint Check
Correctness Low Version 1 Acknowledged

CS-AUGCORE-011

The BaseUpgradeableERC4626v2.mint function checks if shares > maxMint(receiver). But
maxMint returns _maxSupply in:

function maxMint(address) public view virtual override returns (uint256) {
 return _maxSupply;
}

Comparing a marginal increase with the _maxSupply possible does only limit each single deposit to the
maximum possible supply and would break the intended invariant. However, this issue is only rated low
as in _mintErc20 the correct check _canMint(amount) is done. This raises the question about the
need and effectiveness of the _maxSupply check. Additionally, there is a maxDeposit check limiting
the possible amount to deposit in one call.

Acknowledged:

August decided to keep the code unchanged and is aware of the behavior.

5.5 Timestamp Manipulation Window Ignored
Correctness Low Version 1 Acknowledged

CS-AUGCORE-006

In TimelockedClaimOnlyERC4626._registerRedeemRequest() a
_TIMESTAMP_MANIPULATION_WINDOW of 5 minutes is added to the sum of the current timestamp and
the lagDuration. However, due to the fact that DateUtils.timestampFromDateTime() rounds to
the current day this additional 5 minutes is only effective if it pushes the timestamp to the next day. This
means that the window is effectively ignored in most cases.

August - Core Vault - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Acknowledged:

August acknowledges the finding.

5.6 Vault Is Not ERC4626 Compliant
Correctness Low Version 1 Acknowledged

CS-AUGCORE-014

In BaseUpgradeableERC4626v2, the previewWithdraw() function is not ERC4626 compliant. The
standard states : "MUST be inclusive of withdrawal fees.". However, the function does not include the
withdrawal fee in the previewed withdrawal amount.

maxDeposit() and maxMint() are not ERC4626 compliant. Indeed, the standard states : "MUST
return the maximum amount of assets deposit / *shares mint) would allow to be deposited for receiver
and not cause a revert". However, maxDeposit() always returns maxDepositAmount without taking
into account the share supply cap. Similarly, maxMint() always returns _maxSupply not accounting for
the already minted shares. For example, if a vault would already hold some assets and had minted
shares then the maximum amount of shares a user can mint is smaller than _maxSupply.

Furthermore, the standard defines that convertToAssets and convertToShares MUST NOT be
inclusive of any fees that are charged against assets in the Vault. Due to the fact that the vault charges
fees and they are kept in the vault together with the assets until withdrawn (as described in issues
Withdrawal fees are counted towards the vault assets and Management fees are counted towards the
vault assets) the calculation includes charged fees.

See ERC4626

Version 2In , BaseTokenizedAccount_getTotalAssets() was modified and made non-compliant
with the ERC4626 standard as it now can revert if the total assets in the vault are less than the sum of the
total fees and liability assets.

Acknowledged:

August acknowledges the findings with the following statement:

"Our tokenized account is not required to be compliant with the EIP-4626 standard. It supports most of
the ERC4626 functionality though."

Therefore, users or developers interacting with the vault should be aware that the behavior of the vault is
not fully be compliant with the ERC4626 standard.

August - Core Vault - ChainSecurity - © Decentralized Security AG 15

https://eips.ethereum.org/EIPS/eip-4626
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedBlacklisted Can Be Bypassed

• Code CorrectedIncorrect Price per Share

Medium -Severity Findings 6

• Code CorrectedBlacklisted Address Can Delay Legitimate Redeems

• Code CorrectedIncorrect Balance Post Condition

• Code CorrectedManagement Fees Are Counted Towards the Vault Assets

• Code CorrectedQueued Calls in TimelockedCall Are Shared Between Consumers

• Code CorrectedWithdrawal Fees Are Counted Towards the Vault Assets

• Code CorrectedprocessAllClaimsByDate() Can Revert Due to Inccorect receiverAddr

Low -Severity Findings 3

• Code CorrectedNon-ERC20 Compliant Token Definition

• Code CorrectedTautology in Asset Comparison

• Specification Changed_maxSupply Cannot Be Set to 0

Informational Findings 1

• Code CorrectedInconsistent Pragma Use

6.1 Blacklisted Can Be Bypassed
Security High Version 1 Code Corrected

CS-AUGCORE-023

Certain addresses can be blacklisted by the vault owner to prevent these addresses of depositing,
minting or redeeming shares. However, in BaseUpgradeableERC20v2, nothing prevents a blacklisted
address from transferring shares to another address with transfer() or transferFrom(). This
means that a blacklisted address can bypass the blacklist by transferring shares to a non-blacklisted
address and interacting with the vault through the non-blacklisted address rendering the blacklist feature
ineffective.

Code corrected:

transfer and transferFrom functions now check if the sender and the receiver are not blacklisted
before transferring. If either the sender or the receiver is blacklisted, the function reverts.

August - Core Vault - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.2 Incorrect Price per Share
Correctness High Version 1 Code Corrected

CS-AUGCORE-002

The system transfers the ownership from a user to the vault in case of a redemption request. It
additionally locks the asset amount for the user when the redemption request was filed. This will lead to
incorrect return values for all price per share calculations (including view functions). Most severely, the
price per share calculation will be inconsistent for future deposits.

Consider the following scenario:

• User A has 50 shares

• User B has 50 shares

• Total assets 100

User A files a redemption request for their 50 shares at a 1:1 price. Thus, the redemption request will
have 50 assets for user A. Let's assume the vault has a profit of 10 assets after the redemption request
was filed. These 10 assets should belong to user B solely.

User C wants to deposit another 50 into the vault. There are now two options:

1. User C deposits WHILE user A's funds are still in the queue. The price per share would be 110
assets / 100 shares = 1.1

2. User C deposits AFTER user A withdraws the funds. The price per share would be 60 assets / 50
shares = 1.2

The correct price per share should be as soon as the profit is accounted 1.2.

Another explanation would be the following :

1. User C deposits WHILE user A's funds are still in the queue. User C receives 45 shares (45.45
rounded down) for their 50 assets. The total in the vault is now 145 shares and 160 assets. Then, if
A withdraws their 50 shares for 50 assets the total in the vault will be 95 shares and 110 assets.

2. User C deposits AFTER user A withdraw the funds. User C receives 41 shares (41.66 rounded
down) for their 50 assets. The total in the vault is now 91 shares and 110 assets.

The state of the vault should not be affected by the redemption request however, scenario 1 and 2 show
that the amount of shares and assets in the vault are different, depending on if user withdraws before or
after the deposit of user C.

Code corrected:

BaseTokenizeAccount._getTotalAssets() has been modified to not account for assets that are
in the withdrawal queue. Furthermore, TimelockedClaimOnlyERC4626._getTotalSupply() has
been implemented to not account for the shares that are in the withdrawal queue. Therefore, the amount
of shares that are currently pending to be withdrawn for a given amount of assets are no longer
accounted for in the vault.

6.3 Blacklisted Address Can Delay Legitimate
Redeems
Security Medium Version 2 Code Corrected

CS-AUGCORE-024

August - Core Vault - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Version 2In , TimelockedClaimOnlyERC4626.claim() no longer checks if the msg.sender or the
receiverAddr are blacklisted but instead _claim() sends the assets to the settlementAccount if
the msg.sender or the receiverAddr are blacklisted. Due to the fact that claim() is permisionless,
a blacklisted address can delay the legitimate redemption of shares for tokens by calling claim() for a
legitimate redeem request. The consequence of this is that the assets will be redeemed to the
settlementAccount instead of the intended receiverAddr.

Code corrected:

_claim() no longer sends the assets to the settlementAccount if the msg.sender or the
receiverAddr are blacklisted. Instead, _claim() will now revert if the msg.sender or the
receiverAddr are blacklisted.

6.4 Incorrect Balance Post Condition
Correctness Medium Version 1 Code Corrected

CS-AUGCORE-003

In _claim(), the following check if performed at the end of the function:

if (balanceBefore - claimableAssets < IERC20(_underlyingAsset).balanceOf(address(this))) revert BalanceCheckFailed();

This check ensures that the balance of the vault cannot be inflated during the claim process. However,
this check does not cover the case where the balance of the vault loses funds and decreases more than
expected. The check will pass, if the vault has fewer funds than expected. This is also not in-line with the
check in BaseTokenizedAccount where the following condition is used in a similar case:

IERC20(_underlyingAsset).balanceOf(address(this)) != balanceBefore - assetsToSend

Code corrected:

Both checks have been removed. August states that the checks are not required as the pool will use well
known tokens such as USDC or WETH. Thus, it is now assumed that the tx will revert during the ERC20
transfer if the condition does not hold.

6.5 Management Fees Are Counted Towards the
Vault Assets
Correctness Medium Version 1 Code Corrected

CS-AUGCORE-004

A managemenent fee yearly rate is charged to the vault's total assets. However, the management fee is
not subtracted from the vault's total assets until collectFees() is called. This leads to a slight
discrepancy in the management fee calculation over time. For example, if chargeManagementFee() is
called multiple times in a row without calling collectFees(), the management fee will be calculated on
the total assets including the management fee from the previous calls to chargeManagementFee().
This leads to a slight overestimation of the management fee collected. Additionally, the share price will be
inflated until the fees are collected.

This issue is connected with issue Withdrawal fees are counted towards the vault assets.

August - Core Vault - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Code corrected:

totalCollectableFees is now substracted from totalAssets in chargeManagementFee() such
that fees are not paid on uncollected fees. Furthermore, the share price is no longer inflated as the total
assets no longer include the fees.

6.6 Queued Calls in TimelockedCall Are Shared
Between Consumers
Design Medium Version 1 Code Corrected

CS-AUGCORE-005

In TimelockedCall, a scheduler can schedule() a call to a consumer. The call is represented as the
keccak256 hash of the function selector and the arguments.

However, without specifications we assume that TimelockedCall could be used from multiple vaults.
This means that if a call is scheduled on vault A, then the same call with the same argument cannot be
scheduled on vault B assuming that A and B share the same TimelockedCall instance. Both calls will
hash to the same key used in queue. Therefore, the call on vault B can only be scheduled once the call
on vault A has been executed. This would be problematic if multiple vaults require the same parameter
change at the same time.

Code corrected:

The address of the consumer is now hashed together with the hash of the function selector and the
arguments. This ensures that the same call with the same arguments can be scheduled for different
consumers.

6.7 Withdrawal Fees Are Counted Towards the
Vault Assets
Correctness Medium Version 1 Code Corrected

CS-AUGCORE-007

When a user withdraws their funds from the vault, the withdrawal fee is applied to the user's withdrawal
amount. However, the withdrawal fee is not subtracted from the vault's total assets and remains in the
vault's assets until collectFees() is called. Additionnaly, the shares backing the user's total
withdrawal amount (including the fee) are burned, which inflates the vault's share price until the fees are
collected.

Another consequence of this is that the management fee is inflated if the vault has unclaimed withdrawal
fees. The management fee is computed as a percentage of the total assets in the vault and the
percentage is a yearly rate. However, due to the fact that unclaimed withdrawal fees still count towards
the vault's total assets, the management fee is inflated. This leads to a slighlty larger management fee
being collected if the vault has unclaimed withdrawal fees.

A similar issue exists for the managment fees. See Management fees are counted towards the vault
assets.

August - Core Vault - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

_getTotalAssets() now substracts totalCollectableFees from the total assets.

6.8 processAllClaimsByDate() Can Revert
Due to Inccorect receiverAddr
Design Medium Version 1 Code Corrected

CS-AUGCORE-008

In TimelockedClaimOnlyERC4626.requestRedeem() the receiverAddr which will receive the
withdrawn funds can be any address. However, if the receiverAddr is set to the vault address then
processAllClaimsByDate() will revert due to the balance check performed at the end. Therefore, a
single redeem request can block others redeem request from being processed with
processAllClaimsByDate(). Nevertheless, it is still possible to execute single requests with
claim().

Code corrected:

A check was added to registerRedeemRequest() to prevent the vault address from being set as the
receiver address. This should prevent the balance check in processAllClaimsByDate() from
reverting.

6.9 Non-ERC20 Compliant Token Definition
Correctness Low Version 1 Code Corrected

CS-AUGCORE-012

The current token contract implementation in BaseUpgradableERC20 is not ERC-20 compliant. The
ERC-20 definition clearly states

Note Transfers of 0 values MUST be treated as normal transfers and fire the Transfer event

But the implementation will revert if the value is 0 due to:

require(value > 0, "Amount cannot be zero");

Code corrected:

The check has been removed from the code to comply with the ERC-20 standard.

6.10 Tautology in Asset Comparison
Correctness Low Version 1 Code Corrected

CS-AUGCORE-013

In TimelockedClaimOnlyERC4626._registerRedeemRequest one of the earliest conditions
checks that the share balance of the holderAddr is bigger than the share to be redeemed. After the
shares has been converted into assets, another condition checks that the assetsAmount needed after
fees is bigger than the assets one would get for the holderAddr's shares.

August - Core Vault - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

The asset amounts are converted with the same function _convertToAssets but assetsAmount
potentially has some fees deducted.

assetsAmount = _convertToAssets(shares) - fees
maxWithdraw(holderAddr) = _convertToAssets(_balances[holderAddr])

As we know that _balances[holderAddr] >= shares, assetsAmount minus some fees will never
exceed maxWithdraw(holderAddr) because the same conversion is used for two values that we
compared before.

Code corrected:

The condition assetsAmount > maxWithdraw(holderAddr) was modified to
assetsAmount >= maxWithdrawalAmount to check if the amount of assets to be withdrawn does
not exceed the maximum amount allowed.

6.11 _maxSupply Cannot Be Set to 0
Correctness Low Version 1 Specification Changed

CS-AUGCORE-015

In BaseUpgradeableERC20v2, _maxSupply represents the maximum circulating supply of the token.
Moreover, the natspec indicates that if it is set to 0 it represents an unbound supply. However,
_setMaxSupply will revert if the new supply is set to 0.

Specification changed:

The NAT spec has been updated to reflect the new behavior. The new specification states that
_maxSupply cannot be 0.

6.12 Inconsistent Pragma Use
Informational Version 1 Code Corrected

CS-AUGCORE-019

The project is supposed to be deployed on different chains. As the used EVM version might differ on
each chain, the deployer needs to ensure that the code is supported by all versions that potentially will be
used. Most contracts use version ^0.8.19. But multiple contracts like BaseReentrancyGuard,
DateUtils, TimelockedCall, LightweightOwnable and more use >= 0.8.26. We recommend
to:

• properly test the compatibility of the code with each chain it shall be deployed,

• to use a fixed (non-floating) and consistent pragma throughout the whole code base and

• to compile with a consistent EVM version.

Code corrected:

All contracts are now using the pragma ^0.8.19.

August - Core Vault - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Code Duplication
Informational Version 1 Acknowledged

CS-AUGCORE-016

BaseTokenizedAccount.processAllClaimsByDate and
TimelockedClaimOnlyERC4626._claim share critical functionality. To prevent inconsistencies it
might be beneficial to have a shared function to handle the state updates.

Acknowledged:

August acknowledges the code duplication but will not perform any changes.

7.2 Disabling a Scheduler Does Not Invalidate
Queued Requests
Informational Version 1 Risk Accepted

CS-AUGCORE-017

In case a scheduler is disabled but already scheduled certain calls, the scheduler cannot add to the
queue anymore but the remaining queued request are not invalidated. In case a rogue scheduler shall be
disabled, this might leave remaining calls in the queue.

Risk accepted:

August accepts the risk and does not plan to implement any changes.

7.3 Emergency Withdraw Blacklist
Informational Version 1 Acknowledged

CS-AUGCORE-018

Currently, an emergency withdraw can withdraw to any address that is not blacklisted. It might increase
trust if funds will be withdrawn to a whitelisted address that is known instead of any address not
blacklisted.

Acknowledged:

August acknowledges the information without further changes.

August - Core Vault - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7.4 Missing Events
Informational Version 1 Code Partially Corrected

CS-AUGCORE-025

Several functions in the codebase do not emit an event when modifying relevant state. Without
specifications, this list might be incomplete and August need to check if all events are emitted as
intended:

1. The constructor of AddressWhitelist does not emit an event when the owner is set.

2. BaseUpgradeableERC4626v2._updateIssuanceLimits or updateIssuanceLimits do
not emit an event when updating the limits.

Many functions in BaseTokenizedAccount do not emit events including:

1. The function addToBlacklist and removeFromBlacklist do not emit an event when an
address is added or removed from the blacklist.

2. The function removeWhitelistedSubaccount and addWhitelistedSubaccount do not emit
an event when a subaccount is added or removed from the whitelist.

3. The function updateSettlementAccount does not emit an event when the settlement account is
updated.

4. updateTimelockDuration does not emit an event when updating lagDuration.

5. collectFees silently collects the fees.

6. updateMaxChangePercent does not emit an event when updating the maxChangePercent
limit.

7. updateWithdrawalFee does not inform the users about a changed withdraw fee.

8. updateSettlementAccount changes the settlement account silently.

9. depositToSubaccount and withdrawFromSubaccount send and receive funds to and from a
subaccount silently.

10. addToBlacklist and removeFromBlacklist do not inform users about changes in the
blacklist

11. addWhitelistedSubaccount and removeWhitelistedSubaccount do not inform about
changes in the whitelisted subaccounts.

Code partially corrected:

The events MaxChangePercentUpdated() and FeesCollected() were added.

7.5 Non-indexed Events
Informational Version 1 Acknowledged

CS-AUGCORE-020

We identified the following events with parameters that potentially could be indexed to make filtering and
searching easier:

• HashScheduled

• HashConsumed

• SchedulerEnabled

• SchedulerDisabled

August - Core Vault - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

• OnAddressEnabled

• OnAddressDisabled

• WithdrawalRequested

• WithdrawalProcessed

• FeeCollectorUpdated

• OnEmergencyWithdraw

• OperatorUpdated

Acknowledged:

August acknowledges the finding and will not implement any changes.

7.6 Owner Can Be Address Zero
Informational Version 1 Acknowledged

CS-AUGCORE-021

The LightweightOwnable contract allows the owner to directly transfer the ownership to any address
without sanity checks. This allows to set the owner to address zero or another address that is not
controlled. Ultimately, revoking ownership. Without proper specification, we don't know if this is intended
behavior. Hence, we hereby highlight this behavior to check if this is intended.

Acknowledged:

August did not change the code base.

7.7 Unused Functions
Informational Version 1 Acknowledged

CS-AUGCORE-022

The function _reentrancyGuardEntered in BaseeRentrancyGuard is not used in the code and
marked as internal.

August acknowledges the finding but did not perform any changes.

August - Core Vault - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Centralized Power
Note Version 1

As described in the roles and trust assumptions, the system requires significant trust in certain roles.
Users should carefully assess the trust assumptions and inherent risks before using the protocol.

8.2 External Asset Amount Capped Downside
Note Version 1

In TokenizedAccount.updateTotalAssets(), the external asset amount can be updated by the
operator. However, if the change in the external asset amount exceeds maxAllowedChangePerc the
transaction will revert. However, this cap is also applied if the external asset amount is being decreased.
In the unlikely event that the external asset amount decreases significantly, the update to the external
asset amount will revert. This would prevent the operator from updating the external asset amount to the
correct value thus overpricing shares for users.

8.3 Inflation Attack
Note Version 1

The current code base is vulnerable to the well-know inflation attack on vaults by donating significant
funds to the vault after the first deposit was a small amount. Through rounding errors all subsequent
users will be rounded down and lose part or all of their vault contribution.

August is aware of this and tries to mitigate this by doing a trusted first deposit that adds sufficient funds
to mitigate the issue.

8.4 Redeem Requests Can Be Lagged by Less
Than lagDuration
Note Version 1

When a redeem request is registered, the dailyCluster hash and the claimableEpoch are
computed. These values determine the epoch from which the redeem request can be executed.
(year, month, day) = DateUtils.timestampToDate(block.timestamp + _TIMESTAMP_MANIPULATION_WINDOW + lagDuration); // _TIMESTAMP_MANIPULATION_WINDOW = 5 min

// The hash of the cluster
bytes32 dailyCluster = keccak256(abi.encode(year, month, day));

// The withdrawal will be processed at the following epoch
claimableEpoch = DateUtils.timestampFromDateTime(year, month, day, _DEFAULT_LIQUIDATION_HOUR, 0, 0); // _DEFAULT_LIQUIDATION_HOUR = 0

The above code shows that the redemption time is rounded down to day. Therefore, if the lagDuration
is 1 hour, a redeem request submitted at 2:00 PM will be processed immediately because the year,
month, and day will remain the same as the current date. This results in the same dailyCluster hash

August - Core Vault - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

and the same claimableEpoch. Consequently, lagDuration must be bigger than 24h but still smaller
than timeLockDuration to allow users to withdraw funds in case they disagree with certain scheduled
parameter changes.

8.5 Theoretical Assets Can Be Accounted Multiple
Times
Note Version 1

A subaccount can invest the funds on their own discretion. They need to ensure to not have significant
cyclic dependencies when investing funds. With a cyclic dependency we mean funds that are invested
into a protocol that directly or indirectly will deposit into the vault that the subaccount took the funds from.
Investors and subaccounts should properly assess the flow of funds and prevent this form happening.

8.6 Timelockduration Fixed
Note Version 1

Once a timeLockDuration is set in TimelockedCall.initScheduler it cannot be changed
anymore.

8.7 Token Decimals
Note Version 1

The shares of a vault will implicitly have the same decimals as the underlying tokens of the first deposit
into the vault. Consequently, the decimals need to be configured correctly when setting up the vault. In
case of very low decimals rounding errors might lead to issues like a more effective inflation attack if not
sufficient funds are initially deposited from August as planned or fees might have bigger rounding issues.
Therefore, each token should be assessed and tested carefully before using it.

8.8 Token Support
Note Version 1

On request August stated the vault shall support ERC20 tokens. We need to highlight that the vault will
not be able to support all ERC20 tokens. Even though tokens are ERC20 compliant they might exhibit
incompatible behavior. E.g., tokens that charge fees on transfers, re-basing tokens, tokens with low
decimals and more. August MUST assess and test each token thoroughly before using it in a vault.

8.9 claim() and processAllClaimsByDate()
Differences
Note Version 1

In claim(), if the receiverAddr is blacklisted the transaction will revert. However, in
processAllClaimsByDate(), the transaction will not revert if the receiverAddr is blacklisted.

August - Core Vault - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Instead, the funds will be redeemed and sent to a settlement account. August expects this behavior as
processAllClaimsByDate() would prevent legitimate withdrawals from succeeding if it would revert.

August - Core Vault - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Included in scope
	2.1.2 Excluded from scope

	2.2 System Overview
	2.3 Roles and Trust Model
	2.3.1 Changes in

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Blacklisted Address Can Redeem Shares
	5.2 Argument Sanitization
	5.3 Fragmented Code Used
	5.4 Ineffective Check Maximum Mint Check
	5.5 Timestamp Manipulation Window Ignored
	5.6 Vault Is Not ERC4626 Compliant

	6 Resolved Findings
	6.1 Blacklisted Can Be Bypassed
	6.2 Incorrect Price per Share
	6.3 Blacklisted Address Can Delay Legitimate Redeems
	6.4 Incorrect Balance Post Condition
	6.5 Management Fees Are Counted Towards the Vault Assets
	6.6 Queued Calls in TimelockedCall Are Shared Between Consumers
	6.7 Withdrawal Fees Are Counted Towards the Vault Assets
	6.8 processAllClaimsByDate() Can Revert Due to Inccorect receiverAddr
	6.9 Non-ERC20 Compliant Token Definition
	6.10 Tautology in Asset Comparison
	6.11 _maxSupply Cannot Be Set to 0
	6.12 Inconsistent Pragma Use

	7 Informational
	7.1 Code Duplication
	7.2 Disabling a Scheduler Does Not Invalidate Queued Requests
	7.3 Emergency Withdraw Blacklist
	7.4 Missing Events
	7.5 Non-indexed Events
	7.6 Owner Can Be Address Zero
	7.7 Unused Functions

	8 Notes
	8.1 Centralized Power
	8.2 External Asset Amount Capped Downside
	8.3 Inflation Attack
	8.4 Redeem Requests Can Be Lagged by Less Than lagDuration
	8.5 Theoretical Assets Can Be Accounted Multiple Times
	8.6 Timelockduration Fixed
	8.7 Token Decimals
	8.8 Token Support
	8.9 claim() and processAllClaimsByDate() Differences

